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I. Introduction 

It is widely recognized that liquidity provision across many financial markets has been 

shifting from dealers to principal trading firms (PTFs) in both the futures and inter-

dealer cash market1 . In the generic, bygone business model, dealers traded large po-

sitions with customers and then worked out of those positions over time. Customers 

paid for the service, but dealers bore the execution risk. It was almost exclusively the 

dealers who had to optimize the execution of large trades, breaking them up into smaller 

orders and buying or selling strategically over time. More recently, PTFs have become 

the largest providers of liquidity, passively or actively buying and selling in relatively 

small quantities and usually transacting through automated systems. They adjust their 

prices and quantities, dynamically so, as to earn small profits per trade on a large num-

ber of trades. At the same time, traditional customers, like asset managers, trading 

large positions on their own or through an intermediary, have to bear the execution risk 

themselves. As a result of this relatively new paradigm, many more market participants 

now have to focus on the execution of large trades. 

A vigorous and wide-ranging debate has accompanied the changes just described, 

both in the popular press and the academic literature. How has market liquidity changed 

for large orders? Most of the debate has been framed in terms of bid-ask spreads, market 

depth, the Amihud measure, and the price impact of individual transactions. Relying 

on these measures, the literature does not find that liquidity deteriorated over time 

in the 10-Year U.S. Treasury Note futures market2 . Furthermore, according to the 

1Clark and Mann (2016), “A deeper look at Liquidity Conditions in the Treasury Mar-
ket”, Treasury Notes Blog, U.S. Department of Treasury. Retrieved on January 8th, 
2020 from https://www.treasury.gov/connect/blog/Pages/A-Deeper-Look-at-Liquidity-Conditions-in-
the-Treasury-Market.aspx 

2Adrian et al. (2017), Adrian et al. (2015), Adrian et al. (2016), Bessembinder et al. (2016), DTCC 
(2015), Joint Staff Report (2015), Trebbi and Xiao (2019). TBAC (2013) notes that bid-ask spreads 
are “spiky,” so that liquidity as measured by bid-ask spreads may not be consistently available. 

1 

https://www.treasury.gov/connect/blog/Pages/A-Deeper-Look-at-Liquidity-Conditions-in-the-Treasury-Market.aspx
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Chicago Mercantile Exchange (CME), there is even evidence of liquidity improvement3 . 

However, such liquidity metrics are best suited to address the costs of executing small 

orders, while as pointed out in the 2019 Financial Stability Report, markets are liquid 

when market participants can trade large quantities without triggering outsized price 

changes4 . Consequently, one might be able to gain a better view of market liquidity by 

focusing specifically on the execution of large orders. This approach, which is typically 

limited by data availability, would also address anecdotal concerns5 , raised by market 

participants, over an alleged increase in difficulty to conduct large trades in treasury 

markets. Rick Rieder, global fixed income chief investment officer at Blackrock, provided 

support for this claim, while speaking at the Fed’s Third Annual Conference on the 

Evolving Structure of the U.S. treasury markets; he argued that “the markets look like 

they’re on a certain price level, but when you go to transact they are not at that level 

and then people get hit or lifted and then try and unwind their risk; you can create a 

staircase dynamic as people are trying to get out of their risk in smaller size.”6 In the 

same conference, David Tepper, co-founder of Appalosa Management, countered that 

“there is an extra cost to it, but there is always a way to fool the machines.” He also 

noted that “Markets are liquid; the futures markets are fantastically liquid.”7 

Our paper uses a unique dataset and aims to shed some light to this debate, focusing 

3CME Group (2016), “The New Treasury Market Paradigm. Treasury Futures.” Retrieved on Jan-
uary 8th, 2020 from https://www.cmegroup.com/education/files/new-treasury-market-paradigm.pdf 

4Board of Governors of the Federal Reserve System (2018a), Financial Stability Report, Retrieved 
on January 8th 2020 from https://www.federalreserve.gov/publications/files/financial-stability-report-
20191115.pdf 

5Bao and Zhou (2015), on the Global Financial System (2016), Blackrock (2015), Blackrock (2016), 
Committee on Capital Markets Regulation (2015), Dick-Nielsen and Rossi (2018), Papanyan (2015), 
Board of Governors of the Federal Reserve System (2018b), and Wood (2015). 

6Hall (2018), “Buy side reports price movement risk in Treasury trading,” Fi-Desk. Retrieved 
on January 8th, 2020 from https://www.fi-desk.com/buy-side-reports-price-movement-risk-in-treasury-
trading 

7Hall (2018), “Buy side reports price movement risk in Treasury trading,” Fi-Desk. Retrieved 
on January 8th, 2020 from https://www.fi-desk.com/buy-side-reports-price-movement-risk-in-treasury-
trading 
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on the study of the execution cost of large orders in the 10-year U.S. Treasury futures 

market across time. We specifically distinguish between large orders traded for house 

accounts or on behalf of customers, while the literature focuses mostly on orders traded 

on behalf of customer accounts.8 To assess the execution costs of large orders, we follow 

Engle et al. (2012). In particular, we study the mean-variance frontier of market impact, 

measured by implementation shortfall (IS), in the 10-year U.S. Treasury futures market. 

Traders may choose to execute large orders relatively rapidly, by, for example, hitting 

existing bids or lifting existing offers. This choice, will, on average, result in relatively 

high average IS, but relatively low variance around that average. By contrast, traders 

might choose to execute large orders relatively slowly, by, for example, strategically 

using limit orders to avoid paying bid-ask spreads. This choice will result in a relatively 

low average IS, but a relatively high IS variance. The mean-variance combinations for 

various levels of execution urgency are depicted on the mean-variance frontier, which is 

a downward sloping convex curve. 

While we are not the first to consider the piecemeal execution of large orders or the 

resulting mean-variance frontier of IS, this is the first paper to study large orders in 

the Treasury futures market. We use unique regulatory transaction data on the 10-year 

Treasury Note futures contract, which allow us to examine the complete universe of large 

orders in this market during the observation period. Similar to Korajczyk and Murphy 

(2018), we construct the unobservable large, “parent orders,” by consolidating “child 

orders,” which are labeled in the data by account. Details will be provided later in the 

paper, but, roughly speaking, sequential child orders on behalf of the same participant, 

which are executed within a relatively short time frame, and which are on the same side 

of the market, are taken to be part of a single parent order. We find that there is a 

8For a comprehensive description of papers referencing implementation shortfall of customer orders, 
see Hu et al. (2018). 

3 



great variation across parent orders in size, number of child orders and trades, and time 

to execution. 

Averaging and computing the variance of IS across all orders is not sufficient, of 

course, to generate a mean-variance frontier. Engle et al. (2012), had a special data set 

from a particular bank, which included the relative urgency of customer orders, i.e., how 

important it is to the customer to transact quickly at high but certain cost as opposed 

to transacting more strategically at a lower expected cost but with higher variance. In 

general, however, such data does not exit. We, therefore, introduce the methodological 

innovation of inferring a parent order’s urgency based on its observed execution strategy. 

With this measure of urgency, we are essentially able to estimate the expected value and 

variance of IS for each urgency, which is exactly what constitutes the mean-variance 

frontier of execution costs. 

Our contribution to the literature is threefold. First, our analysis reinforces the 

findings of Engle et al. (2012). The estimated mean variance frontiers in the highly liquid 

10-year Treasury futures market behave similarly to the mean-variance frontiers in Engle 

et al. (2012), who study equity markets. More specifically, we find a significant trade-off 

between the mean and the variance of IS, and this trade-off is much more pronounced 

for larger orders. While Engle et al. (2012), have a more accurate exogenous urgency 

measure, we introduce a methodology to extract urgency from the market participants’ 

trading behavior. However, our study is more inclusive, as it utilizes all large orders in 

the market, while the data set used in Engle et al. (2012) contains just orders, initiated 

by Morgan Stanley traders on behalf of their clients or by buy side traders on behalf of a 

portfolio manager. Therefore, our results reinforce the mean-variance frontiers presented 

in Engle et al. (2012)9 . 

9We would like to thank Joel Hasbrouck for pointing out that the efficient trading frontier was 
originally suggested by Kissel and Glantz (2003) 
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Second, in an effort to address the debate over the liquidity of the treasury futures 

markets, we track how the mean-variance frontiers of large orders evolve over time. We 

find that the mean-variance frontier for large orders in this market has improved over 

the sample period. This finding, which indicates that liquidity has improved over the 

period of 2012-2017, is in agreement with the literature, which uses more conventional 

liquidity measures. Moreover, our results provide evidence against the concerns, often 

raised by market participants, over the relatively increased execution difficulty of large 

orders. 

Third, we compare mean-variance frontiers separately for house and customer ac-

counts. In our sample over half of large orders are initiated done on behalf of house 

accounts, and it is therefore worthwhile comparing them to customer orders. This is 

the first paper, to our knowledge to conduct such a comparison. We find that customer 

orders appear to face higher execution costs, compared to orders executed for house 

accounts. This finding is robust to restricting the set of traders to those who routinely 

trade both customer and house accounts. Moreover, orders executed by traders who 

exclusively trade for house accounts enjoy the lowest mean-variance frontier. This is 

consistent with a market in which certain traders have greater skills or access to better 

execution technology. 

The plan of the paper is as follows. Section II discusses the literature review related 

to transaction costs of large orders and liquidity. Section III outlines the conceptual 

approach that underlies our methods and offers a brief description of the data set used. 

Section IV provides summary statistics for our sample, develops the empirical models 

used and explains our results. Section V offers our concluding remarks. 
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II. Literature Review 

Our paper fits in the literature exploring the cost of trading large orders in various 

markets. Most of the papers in the literature, similar to our approach, use the idea 

of implementation shortfall (IS) to measure this cost, which was initially suggested by 

Perold (1988). A challenging part of working on IS of large orders is finding the right 

data that identifies executions belonging to that order. Some researchers use proprietary 

data that identifies transactions belonging to large, institutional orders (Van Kervel and 

Menkveld (2019), Sağlam (2018), Engle et al. (2012)), while others use the Aber Noser 

data to gain access to this information . Finally, similar to our methodology, a few of 

the papers in the literature back out large orders from transaction data under certain 

assumptions and then measure IS.10 

In terms of research utilizing proprietary institutional investor data, Van Kervel and 

Menkveld (2019) make use of order executions by four institutional investors and combine 

that data with public HFT transaction data in Swedish index stocks. Their research 

question is designed to understand the actions of HFTs around these large institutional 

orders and they find that HFTs need considerable time to detect these large, informed 

institutional orders. While HFTs supply liquidity to institutional orders during this 

process, they start trading in the same direction of institutional orders once they catch 

on, and this makes it more costly for institutional investors to execute their large orders. 

Similarly, Sağlam (2018) analyzes predictable patterns in large order execution s-

trategies and how those relate to the cost of execution. Their empirical analysis uses 

large orders submitted by 146 investors, mostly institutional portfolio managers, and 

reveal that the cost of trading is positively correlated with predictable trading patterns. 

They conclude that their findings are consistent with predatory trading (back-running) 

10Korajczyk and Murphy (2018) and Putnins and Barbara (2017) are a few examples of such papers. 
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idea rather than sunshine trading. 

Abel Noser data allow researchers answer various research topics. While Barbon 

et al. (2019) focus on how brokers diffuse (leak) information to their best clients, Ben-

Rephael and Israelsen (2017) document the trading desk skills of management companies 

can vary depending on which institutional client they are serving. In terms of the 

analysis of execution cost of institutional orders using Abel Noser data, Chakrabarty 

et al. (2017) find that majority of short-term institutional trades lose money, especially 

in more volatile markets and in small stocks. Brogaard et al. (2014) analyze whether 

HFTs increase the execution costs of institutional investors and they find no evidence 

suggesting that HFTs causally increase or decrease these costs. 

The approach in our paper is more in line with other studies backing out large orders 

from proprietary transaction level data. Similar to ours, Korajczyk and Murphy (2018) 

make use of a transaction and message level data provided by a Canadian markets 

regulator to analyze changes around a regulatory change in the marketplace. They 

find that this exogenous change reduced HFT order activity, which also coincided with 

increased bid-ask spreads and decreased price impact for institutional orders. Another 

study making use of regulatory data is Putnins and Barbara (2017), where authors 

make use of a transaction level data from the Australian market regulator, ASX. They 

identify a rich heterogeneity among algorithmic and high-frequency traders in their data 

and while some of these traders increase institutional trading costs, others decrease them. 

Overall, they find that the negative effect of toxic traders is offset by the positive effect 

of beneficial traders in the markets they analyze. Similar to those two papers, Chen 

and Garriott (2020) also use transaction and message data from the Montreal Exchange 

with trader identifiers, which they use to identify large institutional trades as well as 

high frequency traders. They find that existence of HFTs in the Government of Canada 

Bond futures market actually improves transaction costs for institutional traders. 
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Our findings also complement existing literature on variation on execution costs. 

Anand et al. (2011) find significant variation in execution costs across trading desks 

of various management companies, showing that even when the average execution cost 

is low, variation can be high. Ben-Rephael and Israelsen (2017) study the differences 

in execution costs across clients within management companies and find there to be 

systemic differences across clients for a subset of management firms. We measure the 

execution cost of large house orders and compare them to the execution cost of similarly 

sized customer orders and show that execution costs for customer orders are significantly 

higher than those of house orders. 

In terms of methodology, our paper follows Engle et al. (2012), Almgren and Chriss 

(2000) and Almgren (2003) which suggest that a reduction in execution costs by taking 

longer to execute the order corresponds to added risk or trading. Engle et al. (2012) 

estimates a risk-return frontier, which allows them to calculate a risk-adjusted cost of 

execution. We utilize this approach in our paper as well. 

III. Data and Methodology 

A. Data 

Our data set comprises transactions of 10-year Treasury Note futures contracts from 

February 15th, 2012, to November 30th, 2017. These contracts are traded electronically 

on Globex, the electronic platform of the Chicago Mercantile Exchange (CME). We limit 

our attention to outright trades (e.g., excluding calendar trades) in the front month 

futures contracts and to transactions that originate from market or limit orders. 

Our data set is constructed from the Transaction Capture Report database of the U.S. 

Commodity Futures Trading Commission (CFTC), which contains detailed transaction 
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information, including the transaction time, price and quantity of every futures trade. 

The database also includes information on the order from which each trade originated, 

namely the order entry time, the order type (e.g. market, limit, stop-order), a flag for 

automated trades, and an order identifier, which allows us to identify which transactions 

are part of which order. Finally, the database has fields pertaining to the counterpar-

ties to each transaction and the traders executing that transaction. In particular, the 

database identifies the counterparties, indicates the buyer and the seller, indicates which 

side initiated the trade, provides an identification number for each trader, and contains a 

customer type indicator (CTI), which allows us to distinguish customer from proprietary 

trades11 . 

B. Methodology 

B.1. Parent Orders 

The first step in our analysis is to identify large orders placed by market participants. 

Our data set contains an order identifier, which along with market participant informa-

tion, can accurately aggregate transactions into “child orders.” These trades represent 

successive partial fills of the same child order. Unfortunately, our data does not pro-

vide any information on cancellations and modifications. However, these child orders 

are most likely to have come from market participants who are slicing larger, “parent 

orders” into these smaller, child orders. While there is no way to know with certainty 

which child orders belong to which parent orders, we can try to infer parent orders from 

the trading pattern of a market participants’ child orders. 

11This allows us to identify customer and proprietary accounts. We can also identify which traders 
execute orders just for their proprietary accounts, just for customer accounts or for both their proprietary 
accounts and some customer accounts.However, trader to customer association is not one-to-one. A 
trader generally has more than one customer whose orders she executes and technically a customer can 
have their orders handled by more than one trader 
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To identify parent orders, we first aggregate all transactions on the same date, orig-

inating from the same account, and with the same order id into child orders. Next, we 

aggregate these child orders into parent orders based on the following rules: sequential 

child orders belong to the same parent order if they were placed on the same day by the 

same account and trader, and were all on the same side of the market; exclude parent 

orders where the average time between the entry of child order exceeds one hour; exclude 

orders taking longer than one day to execute, as well as orders entered or executed on 

weekends and holidays. Furthermore, since our intention is to study large orders, we 

include in our sample only those parent orders for at least one thousand contracts, which 

correspond to less than the largest 1% of identified parent orders. 

B.2. Urgency 

As pointed out by Engle et al. (2012), the cost of executing an order depends on the level 

of risk that the agent is willing to assume. Risk averse agents trade rapidly, at relatively 

high average costs with little variance, while those willing to tolerate a higher level of 

risk execute slower, more opportunistic trading strategies, which are characterized by 

relatively low average costs but relatively higher variance of costs. The data set used 

by Engle et al. (2012) comes from a particular broker and contains information on the 

instructions provided by the owner of an order to the executing broker. Our data set 

has the advantage of including all large orders placed in the market, but does not have 

any information as to the intended trading strategies. 

To proxy for the urgency of each order, we contrast the distribution of its transactions 

during the day with an estimate of the distribution of market volume. More specifically, 

we define an urgency measure as the difference between the volume-weighted execution 

time of a given parent order and the volume-weighted execution time of a hypothetical 

VWAP order of the same size. A VWAP – volume-weighted average price – order is one 
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in which a customer wants to realize a price equal to the volume-weighted average price 

in the market over the time frame of the order12 . Furthermore, the most typical way to 

execute a VWAP order is to trade over time in the same proportion as market volumes. 

Say, for example, that over the three-period time frame of an order, market volume is 

distributed 20%, 30%, and 50%. In that case, 20% of a VWAP order would be executed 

in the first period, 30% in the second, and 50% in the third. Mathematically, urgency, 

u, is given by: 

u = V WATmarket − V WATorder, (1) 
nX vmarket,t 

V WATmarket = t, 
t=1 

Vmarket 

nX vorder,t 
V WATorder = t 

t=1 
Vorder 

where n is the number of minutes from the entry of the first child order of a given parent 

order to the time of the market close, vmarket,t is the aggregate quantity transacted in 

the market during minute t, as estimated from the time-pattern of daily market volumes 

over the last 30 days, Vmarket is the aggregate quantity transacted in the market from 

minutes 1 to n, as estimated from the time-pattern of daily market volumes over the last 

30 days, V WATmarket is the volume-weighted execution time of a hypothetical VWAP 

order over n minutes, vorder,t is the aggregate quantity of the order transacted during 

minute t, Vorder is the aggregate quantity of the order transacted during minutes 1 to n, 

and V WATorder is the volume-weighted execution time of parent order. 

To repeat, urgency is how much faster the order is executed, in minutes, than a 

hypothetical VWAP trade of the same size from the time the first child order is entered 

in the book until the market close. The choice of market close as the end of the time 
12Effectively, lacking any detailed information on the actual urgency of customers, we are assuming 

that the execution time frame ends at the market close. 
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frame implies that trades placed early in the day that are executed relatively quickly, 

will be measured as having more urgency than trades placed later in the day that are 

executed just as quickly. To normalize for the time of the execution of the first child 

order, we normalize urgency by scaling it by its upper and lower boundaries. 

More specifically, since V WATorder ranges between 1 and n minutes, the boundaries 

for u are given by: V WATmarket − n ≤ u ≤ V WATmarket − 1. 

The lower boundary (V WATmarket − n) is never positive and is the minimum order 

urgency in minutes, corresponding to the case of a trader executing the entire order at 

the close. Similarly, the upper boundary (V WATmarket − 1) is never negative and is 

maximum possible urgency in minutes, corresponding to the case of a trader executing 

the entire order in the first minute. 

Using these boundaries, we define a normalized urgency measure, U , as follows: 

u 
when u < 0 then U = , 

n − V WATmarket 

when u = 0 then U = 0, 

u 
when u > 0 then U = . 

V WATmarket − 1 

By construction, therefore, normalized urgency measure ranges from −1 to 1, where 

negative (positive) values correspond to orders executed at a slower (faster) pace than a 

VWAP order. For our empirical analysis, we multiply normalized urgency by 100, which 

puts it in the range of −100 to 100. 
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B.3. Execution Costs 

Our data allows us to estimate execution costs for each parent order. Consistent with 

the literature, we estimate the implementation shortfall (IS ) for each parent order as: 

Porder − Pb 
IS = 10, 000 ∗ D ∗ , (2) 

Pb 

where Pt,order is the volume weighted average price of the parent order, Pb is the bench-

mark price, measured by the average price of trades occurring in the one minute interval 

preceding the entry of the first child order of a given parent order, and D is the trade 

direction indicator, which is equal to 1(-1) for a buy(sell) order. 

In words, IS compares the realized execution price of the order to the price just 

before the arrival of the order in the market, and is expressed in this paper in basis 

points. An order would be considered buy-initiated (sell-initiated) if it is a buy (sell) 

order and the IS is positive (negative). 

B.4. The Model 

We model execution costs, following Engle et al. (2012)), accounting for both the expect-

ed execution cost (IS ) and the risk of trading the order. More specifically, the execution 

cost of each parent order i is given by: 

0 1 0 
ISi = exp(X i β) + exp( X i γ)�i, �i ∼ N(0, 1) (3) 

2 

where Xi is a vector of conditioning information, which in our base model consists 

of order and market characteristics. Order characteristics include the logarithm of the 

order size, the urgency of the order (Ui), and a dummy indicating whether the order 

belongs to a customer (cust dummyi). Market characteristics include the logarithm of 
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the volume of the specific contract on the day of a given parent order execution, and a 

measure of volatility defined as the logarithmic difference of the maximum and minimum 

prices of the contract on that day. 

The model restricts expected IS and the variance to be positive. This is obviously 

a reasonable assumption for the variance, and, because our analysis focuses on large 

orders, is also a reasonable assumption for the mean. This does not imply, of course, 

that all realizations of IS are positive. In our data set, implementation shortfall is 

positive for over 60% of the parent orders, and this is roughly the proportion for both 

customer and proprietary orders. 

Under this model, the expected execution cost and variance of each order are esti-

mated jointly using a maximum likelihood estimator under the normality assumption 

for �i, where: 

E(ISi) = exp(β1volatilityi + β2logvolumei + β3logsizei + β4Ui + β5cust dummyi), 

(4) 

E(ISi) = exp(γ1volatilityi + γ2logvolumei + γ3logsizei + γ4Ui + γ5cust dummyi) 

The coefficients of the variables appearing linearly in the exponent can be interpret-

ed as the percentage change in the expected IS for one unit change in X, while the 

coefficients of the variables appearing as logarithms in the exponent can be interpreted 

as the elasticity of the corresponding non logged variable. 

We also extend the model below to include in the explanatory variables a time trend 

and its interaction with the logarithm of order size in order to evaluate whether execution 

costs have changed over time. 
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IV. Empirical Analysis 

A. Descriptive Statistics 

Table I presents descriptive statistics for the large parent orders constructed for this 

analysis. On average, these large parent orders are for about 2,000 contracts, are divided 

into about 40 child orders, are executed through 200 transactions, and take a total of 

about 1 hour and 20 minutes to execute. There is significant variation, however, around 

these averages. For example, at the 95th percentile, parent orders are for about 4,500 

contracts, are divided into nearly 200 child orders and over 500 transactions, and take 

6.25 hours to execute. Manually executed orders comprise about 40% of the sample. 

The urgency of the parent orders, calculated as described in the previous section, 

average 155 minutes faster than a hypothetical VWAP execution, which seems propor-

tionately quite urgent given the average parent order execution time of 78 minutes. In 

normalized terms, average urgency is 81% of the way from VWAP execution to imme-

diate execution of the entire order. 

Finally, the implementation shortfall of our large parent orders is, on average, 0.27 

basis points. The variation around this average, however, is quite large, with a standard 

deviation of 7 basis points and a 5th to 95th percentile of observations ranging from 

between -9 and 9 basis points. This large variation relative to the mean supports this 

paper’s focus on both the mean and variance of implementation shortfall to measure 

liquidity. Our dataset allows us to differentiate the type of accounts from which parent 

orders originate. Market participants have to declare this type for every order through 

a CTI code. Table II explains the CTI codes in detail and gives the distribution of 

parent orders across codes. Briefly, CTI 1 applies to orders initiated and executed for 

the account of an individual member, but not for proprietary trading. CTI 2 applies 

to orders initiated and executed for the proprietary accounts of a member firm. CTI 3 
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applies to orders that a member executes on behalf of another member. CTI 4 applies 

to orders entered by or on behalf of nonmember entities. According to table II, 99% of 

the parent orders, which comprise 98% of trading volume, are CTI 2 or CTI 4. For the 

rest of this paper, therefore, we focus exclusively on these two order types, and refer 

to them as proprietary and customer orders, respectively. Note that about 40% of the 

orders in the sample are proprietary and about 60% are for customers. 

Table III presents the same summary statistics as in table I, but separated by pro-

prietary and customer parent orders. Generally, customer orders are larger, broken up 

into a greater number of child orders and executions, take longer to execute, and are 

more often executed manually. Another key difference, which will be explored further 

later in the paper, is that customer orders tend to have larger and more variable costs, 

as measured by IS. 

B. Implementation Shortfall - Base Model 

Our base model, described in the previous section, aims to identify the drivers of trans-

action costs for large orders in the 10-year treasury futures market. It jointly estimates 

the expected value and variance of IS. We use explanatory variables similar to those in 

Engle et al. (2012). More specifically, to capture order characteristics, we use the loga-

rithm of the order size, the urgency of the order (Ui), and a dummy indicating whether 

the order belongs to a customer. To control for market conditions, we use the logarithm 

of the market volume of the contract on the day of the parent order and price volatility, 

as measured by the logarithmic difference of the maximum and minimum contract prices 

on that day. Table IV gives the estimated coefficients of the equations for the mean and 

variance of the IS of large orders in the sample. 

The results from the baseline model are for the most part in line with those from the 
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literature (e.g., Engle et al. (2012)). We find that expected IS increases with market 

volatility, order size, and urgency, but decreases with market volume. The variance 

of IS increases with market volatility and order size, and decreases with urgency, as 

anticipated, but—contrary to priors—increases with market volume.13 

The effect of order size on the expected value and variance of the costs of trading is 

economically as well as statistically significant. Relative to an order for 1,000 contracts, 

an order for 1,650 contracts incurs a 46% increase in expected cost and a 21% increase 

in the variance of the cost. 

The estimated coefficients on the customer dummy variable indicate that, on average, 

customers face both a higher expected cost and a higher variance of transacting. This 

finding will be discussed in greater detail below, but is also economically significant. 

Relative to a proprietary order, a customer order incurs nearly double the expected cost 

and a one-third increase in variance. 

The economic significance of urgency is best illustrated by the mean-variance fron-

tiers of the costs of trading. Using the estimated coefficients of the base model, along 

with an intraday volatility of 45% and log market volume of 14 (which are approximate-

ly sample means), figure 1 shows the frontier facing a customer with an order of 1,000 

contracts. Each point on the frontier corresponds to a different level of urgency, and 

figure 1 highlights two such points, namely, urgency values of 80 and 95. The graph 

as a whole ranges from an urgency of 100 at the leftmost point to an urgency of 76 at 

the rightmost point, which range covers the upper 75% of parent orders in our sample. 

The resulting frontier is downward sloping and convex, confirming that relatively urgent 

orders execute at higher mean cost but lower variance, while relatively non-urgent or-

ders execute at lower mean cost but higher variance. Furthermore, the mean-variance 

13This negative estimate is different than what is observed in the literature. We believe this might be 
because of how we define market volume. While we add the trading volume of the contemporaneous day 
in our regressions, Engle et al. (2012) adds the lagged 21 day median daily volume to their regression. 

17 



trade-off is economically significant: by choosing across the range of urgencies shown, a 

customer with a 1,000 contract order can choose over a wide range of mean-variance IS 

combinations, from 0.54 mean and 6.28 variance to 0.16 mean and 15.7 variance. 

Figure 2 shows the IS mean-variance frontiers for each of the following four order 

profiles: customer orders of 1,000 and 5,000 contracts, and proprietary orders of 1,000 

and 5,000 contracts. As in figure 1, each graph covers urgency levels from 100 to the 

far left and 76 to the far right. The economic significance of the differences are striking, 

both of customer vs. proprietary orders and of 1,000 vs. 5,000 contracts. Order sizes 

of 5,000 contracts face far worse frontiers than orders of 1,000 contracts, and customer 

orders face significantly worse frontiers than proprietary orders. 

C. Implementation Shortfall - Time Trend 

We now explore how the transaction costs of large orders have changed over time, that 

is, over our sample period from early 2012 until late 2017. For this purpose, we add to 

the base model a time trend and an interaction term of time trend with parent order 

size. This exercise can be viewed as testing the proposition that, while execution in 

the treasury futures market might have become less costly from the growing presence of 

algorithmic traders, those savings might not have accrued to large orders. 

The estimated coefficients in table V reveal a complex relationship between IS, time, 

and order size. The time trend indicates that mean IS has increased, but its variance has 

decreased. Relative to smaller orders, however, larger orders have experienced lower IS 

mean but higher variance. To sort out the relative importance of these effects, figure 3 

graphs the mean-variance frontier for customer orders of 1,000 contracts over time. More 

specifically we present the corresponding mean-variance frontiers for the first quarter of 

2012 (Q1 2012), the first quarter of 2013 (Q1 2013), the first quarter of 2014 (Q1 2014) 
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and the first quarter of 2015 (Q1 2015). 

While the interpretation of the regression coefficients, presented in table V, are chal-

lenging to interpret, Figure 3 makes it clear that the mean-variance frontier has shifted 

down and to the left over time. In other words, transaction costs have fallen or liq-

uidity has improved, as measured by the mean-variance frontier available to market 

participants. Furthermore, the shapes of the frontiers are such that, for trades executed 

relatively slowly, those in the lower right, there has been a sizeable decrease in variance 

and a marginal increase in mean. By contrast, for trades executed relatively quickly, 

those in the upper left, there has been a more modest decrease in variance in addition 

to a somewhat more pronounced increase in mean. Finally, while not illustrated here, 

results are similar for proprietary trades. For very large orders (i.e. 5000 contracts), the 

mean also decreases, as evidenced by the negative interaction of time and parent order 

size in table V. 

D. Implementation Shortfall - House or Customer Accounts 

As revealed by our base model, both with and without a time trend, the cost difference 

between house and customer accounts is sizeable. On average, the cost experienced by 

customers is almost double of that experienced by house accounts, and the variance of 

cost for customers is about a third larger. This section explores these sizeable differences 

in greater detail. 

One possible explanation of cost differences across orders is that some traders in 

these markets are more sophisticated along certain dimensions than others and might 

even possess better trading technology and be able to trade faster.14 Furthermore, these 

highly skillful traders might choose to keep these superior abilities to themselves and 

14Haynes and Roberts (2019) describe the differences in speed across various contracts traded at the 
CME. Their results indicate that a few of the traders enjoy the highest trading speeds. 
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not trade at all on behalf of customers. 

To pursue this possible story, we define P-traders as those that trade large orders on 

behalf of their own accounts, that is, trades exclusively coded CTI 2, at least 95% of the 

days in the sample. Analogously, we define C-traders as those who trade large orders 

on behalf of customer accounts, that is, trades exclusively coded CTI 4, at least 95% 

of the days in our sample. We define all other traders as P&C-traders, to be thought 

of as trading for both house and customer accounts15 . Finally, we exclude traders who 

trade coded CTI 1 and CTI 3, when those CTI 1 and CTI 3 large orders represent more 

than (or equal to) 25% of the number of large orders or volume they trade. This is to 

avoid having traders with considerable trading activity in CTI 1 and CTI 3 orders be 

classified as P-traders, C-traders or P&C-traders. Such traders are relatively small and 

rare and when we exclude them we are able to keep about 99% the original sample of 

large orders. 

Table VI presents summary statistics for these three different groups of traders. The 

top panel, which includes all traders, shows that the number of C-traders and P-traders 

are similar, while P&C-traders number less than half than those in the other two groups. 

In terms of average daily activity and total trading activity, however, P&C-traders are 

the most active on average, trading more than four million contracts per day. Finally, 

the last two columns in the panel show that a third of the trading done by P&C-traders 

is proprietary and two-thirds is on behalf of customers. 

Since some traders are active for only a few days in our sample, the bottom panel 

presents analogous statistics only for traders who are active, i.e., traders who have 

transacted at least 20 out of the 1460 days in our sample. The count of active traders 

across these three trader groups is relatively balanced. And, for these active traders, 

15Note that we apply no exclusivity restriction in our definition. Our P&C-traders traders can handle 
customer and house accounts within the same day. 
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P&C-traders are still the group with highest volume of trades, twice that of P-traders 

and about ten times more than C-traders, indicating, again, that most customer-trading 

is done by P&C-traders. 

Returning to the hypothesis that the higher cost of customer orders is due to their 

being executed by less skilled traders, table VII shows the results of an implementation 

shortfall regression, like that of our earlier base model, but with dummy variables for 

customer orders executed by P&C-traders, customer orders by C-traders, and proprietary 

orders by P&C-traders. Hence, all of the estimated coefficients on these dummies are 

relative to a benchmark corresponding to the omitted dummy, namely, proprietary orders 

by P-traders. 

The estimated coefficients in table VII show that the lowest cost of trading is ex-

perienced by proprietary trades executed by P-traders, followed, in ascending order, by 

proprietary trades by P&C-traders, customer trades by C-traders, and customer trades 

by P&C-traders. The estimated variance of implementation shortfall is the smallest for 

proprietary trades by P-traders, followed by the three other categories in the same order 

as the mean, but are much more similar in value. The greater mean and variance of 

IS for the three groups of trades relative to those of proprietary trades by P-traders is 

also economically significant. Customer trades executed by P&C-traders cost 109 per-

cent more on average and have a 62 percent higher variance. For customer trades by 

C-traders, the average and variance are 56 percent and 60 percent higher, respectively, 

while for proprietary trades by P&C-traders, they are 38 percent and 58 percent higher. 

Figure 4 shows the mean-variance frontier for the cost of proprietary and customer 

trades of 1,000 contracts through P-traders, C-traders, and P&C-traders. Consistent 

with the regression results of table VII, proprietary trades by P-traders has the lowest 

frontier. The frontiers for the three other cases are higher by economically significant 

magnitudes. Together, then, table VII and Figure 4 are consistent with the hypothesis 
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that the level of transaction costs depends on trader type, and that, in our sample, 

P-traders - who, by definition, do little to no customer trades - are able to realize the 

lowest costs. 

Next, we ask two detailed questions in order to understand the comparison among the 

more costly groups in our analysis. First, how do costs among customer order types vary 

across trader types? Second, we explore how costs for between customer and proprietary 

orders compare across the same group of traders, namely the P&C-traders. 

Table VIII shows the estimates from a regression run solely on customer orders. 

The estimates of the C-trader dummy variables in the regression are both positive and 

significant, reinforcing the previous findings that customer trades done by C-traders are 

more costly, on average, and have higher variance. The average execution cost estimate 

is also economically significant; namely the implementation shortfall of customer orders 

traded by C-traders is more than 40 percent higher than that of customer orders traded 

by P&C-traders. The difference for the variance of implementation shortfall is much 

smaller, only higher by 3 percent. 

Table IX turns the focus on P&C-traders only and evaluates the costs of customer 

orders separately from proprietary orders using a Customer dummy in the regression. 

Within the same group of traders, those who trade both customer and proprietary orders, 

we show that customer orders are statistically and economically more costly, on average, 

and also have a higher estimated variance. Specifically, customer orders experience on 

average 43 percent higher implementation shortfall and their variance is higher by about 

5 percent. We can only speculate that the cost difference must be due the divergence 

between the nature of these two types of orders, such as their information content. 

Understanding the exact causes of these differences is an exercise we plan to undertake 

in the future. 
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V. Concluding Remarks 

This paper develops a mean-variance framework, similar to Engle et al. (2012), to study 

the execution costs of large orders in the 10-year Treasury Note futures market, through 

time, across proprietary and customer orders, and across traders that typically trade for 

their account, for customer accounts, or for both. Our results indicate that from 2012 

to 2017 the mean-variance frontier for large orders has shifted downwards, meaning that 

orders of similar size could be executed over time with lower mean IS at a fixed variance 

or with lower variance of IS at a fixed mean at lower execution costs towards the end 

of our sample. We find that orders executed by traders, who trade exclusively for their 

own accounts, face the lowest frontier, followed, in ascending order by proprietary orders 

executed by traders that trade for both house and customer accounts, customer orders 

executed by traders who trade almost exclusively for customers, and customer orders 

executed by traders who execute for both house and customer accounts. Determining 

the causes underlying this hierarchy of costs is left for future research. 
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Figure 1: Mean-variance frontier for a customer parent orders for 1,000 contracts 

Figure 1 shows the mean-variance frontier for the IS of a customer order of 1,000 
contracts, using estimated coefficients from the base model, an intraday volatility 
of 40%, and a log market volume of 14. The graph shows urgency levels between 
76 and 100. 
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Figure 2: Mean-variance frontier: customer and proprietary orders for 1,000 and 5,000 
contracts 

Figure 2 shows the mean-variance frontier for the IS of a customer order of 1,000 
contracts, a customer order of 5,000 contract, a proprietary order of 1,000 con-
tracts, and a proprietary order of 5,000 contracts. As in figure 1, the frontiers are 
constructed using estimated coefficients from the base model, an intraday volatil-
ity of 40%, and a log market volume of 14, and show urgency levels between 76 
and 100. 
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Figure 3: Mean-variance frontiers for customer orders of 1,000 contracts, across time 

Figure 3 shows the mean-variance frontier for the IS of a customer order of 1,000 
contracts over time. The four frontiers are constructed using estimated coefficients 
from the base model with the time trend and time-order size interaction term, an 
intraday volatility of 40%, and a log market volume of 14. We estimate the frontier 
for the first quarter of 2012 (2012 Q1), the first quarter of 2013 (2013 Q2), the 
first quarter of 2014 (2014 Q4) and the first quarter of 2015 (2015 Q1). As in the 
previous figures, the graphs show urgency levels between 76 and 100. 
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- - Customer orders; P&C-trader - - Proprietary orders; P&C-trader 

Figure 4: Mean-variance frontier for customer and proprietary orders by trader type 

Figure 4 shows the mean-variance frontier for customer and proprietary trades ex-
ecuted by C-traders, P-traders and P&C-traders type. The mean implementation 
shortfall is shown on the Y-axis and variance of implementation shortfall is on the 
X-axis. Blue lines in the graph represent the mean-variance frontier for customer 
orders, while the red lines represent the mean-variance frontier for proprietary 
orders. Orders executed by a C-traders are on the red solid line, while orders 
executed by a P-traders are on the blue solid line. Dashed lines represent order 
executed by P&C-traders. 
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Variable Mean Median 5th Percentile 9 5th Percentile Std Dev 

Parent order size 1,957 1,447 1,000 4,584 1,782 

Number of child orders 41 6 189 149 

Number of trades 200 139 39 558 240 
Total execution time 78 13 0 375 143 

(minutes) 

Time between entry of child 
7 0 36 12 

orders (minutes) 

Manual trades 40% 0% 0% 100% 0 
(%) 

Initiated trades 64% 72% 0% 100% 0 
(volwne weighted %) 

Urgency 155 144 10 411 131 
(minutes) 

Urgency 81% 97% 9% 100% 0 
(normalized) 

IS 0.27 0.47 -9.04 8.92 7 
(bps) 

Table I: Summary Statistics for Parent Orders 

Table I gives summary statistics for parent orders in the data set. Parent order size 
is the total size of the identified parent order, measured in number of contracts. 
Number of child orders is the number of child orders associated with a given parent 
order. Number of trades is the total number of transactions associated with a given 
parent order. Total time to execution is the number of minutes it takes to execute 
a given parent order, measured from the time the first child order is entered in the 
order book to the time of the last execution of that parent order. Time between 
entry of child orders for a given parent order is the average time between the entry 
of subsequent child orders, across all child orders in that parent order, measured in 
minutes. Manual trades is the proportion of transactions associated with a given 
parent order that are traded using manual access to the market. Initiated trades 
shows is the volume-weighted proportion of transactions associated with a given 
parent order in which the trader is the aggressor. Urgency is the difference between 
the time to executing a hypothetical VWAP order and the time to executing a 
given parent order, measured in minutes. Higher values indicate greater urgency 
in the execution of that parent order. Normalized urgency normalizes Urgency 
to a variable between -100% and 100%, where -100% indicates full execution at 
the time of the last transaction of a given parent order and 100% indicates full 
execution at the time of the first transaction. Finally, implementation shortfall 
is measures the difference between the contract price just before the start of the 
execution of a given parent order and the volume-weighted transaction prices of 
that parent order, measured in basis points.. The sample contains 292,436 parent 
orders, although there are only 251,431 observations for the time between entry of 
child orders, due to a number of parent orders that contain a single child order. 
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Parent orders by CTI code 

CTI code No. of orders 
Total volume No. of orders Total volume 

(contracts) (%) (%) 

3,469 13,317,492 1% 2% 

2 173,692 304,929,539 59% 53% 

3 243 661,921 <0.1% <0.1% 

4 115,032 253,477,370 39% 44% 

All 292,436 572,386,322 100% 100% 

Table II: Distribution of parent orders by CTI code 

Table II shows the distribution of parent orders by CTI code: CTI 1: Electronic 
Trading, Open Outcry and Privately Negotiated - Applies to transactions initiat-
ed and executed by an individual member for his own account, for an account he 
controls, or for an account in which he has an ownership or financial interest. How-
ever, transactions initiated and executed by a member for the proprietary account 
of a member firm must be designated as CTI 2 transactions. CTI 2: Electronic 
Trading, Open Outcry and Privately Negotiated – Applies to orders entered or 
trades executed for the proprietary accounts of a member firm. CTI 3: Electronic 
Trading – Applies to orders entered by a member or a nonmember terminal op-
erator for the account of another individual member or an account controlled by 
such other individual member. CTI 3: Open Outcry and Privately Negotiated -
Applies to orders that a member executes on behalf of another individual mem-
ber, or for an account such other member controls or in which such other member 
has an ownership or financial interest. CTI 4: Electronic Trading Open Outcry 
and Privately Negotiated - Applies to all orders and transactions not included in 
CTI categories 1, 2 or 3. These typically are orders entered by or on behalf of 
nonmember entities. 
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Proprietary Customer 

Variable Mean Median 
5ffi Per- 95ffi P'er- Std Mean Median 

5ffi Per- 95ffl Per- Std 
centile centile Dev centile centile Dev 

Parent order size 1,756 1,380 1,000 3,766 1,211 2,204 1,507 1,000 5,482 2,216 
Number of child 

25 6 1 112 71 65 5 1 325 218 
orders 

Number of trades 174 131 40 446 179 238 157 38 701 305 
Total execution time 

59 7 0 304 120 107 32 0 439 168 
(minutes) 

Time between entry of 
5 1 0 30 10 10 3 0 43 14 

child orders (minutes) 
Manual trades 

28% 0% 0% 100% 0 57% 100% 0% 100% 0 
(%) 

Initiated trades 
66% 74% 0% 100% 0 62% 69% 0% 100% 0 

(volume weighted%) 
Urgency 

149 144 18 374 116 165 145 - 1 449 152 
(minutes) 
Urgency 

85% 98% 18% 100% 0 76% 92% 0% 100% 0 (normalized) 
IS 

0.22 0.41 -7.24 7.13 6 0.37 0.62 -11.53 11.30 8 
(bps) 

Table III: Summary statistics for proprietary and customer parent orders 

Table III presents descriptive statistics separately for proprietary and customer 
trading accounts. The variables are as described in table I. The data set has 
174,692 proprietary and 115,032 customer parent orders, 156,114 and 92,593 of 
which, respectively, have strictly more than one child order. 
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Mean Variance 

Variable Estimate Std. error t-value Estimate Std. error t-value 

L Const.ant -8.072 0.624 -12.94 -4.058 0.136 -29.76 
lntraday volatility 0.728 0.082 8.90 3.311 O.Dl5 2 13.89 

-
Log volume -0.272 0.037 -7.43 0.375 0.010 38.73 

Log parent order size 0.759 0.019 39.57 0.389 0.005 70.99 

Urgency (normalized) 0.051 0.004 14.37 -0.038 0.000 -305.86 

Customer dummy 0.624 0.024 26.09 0.296 0.005 54.54 

Table IV: Execution costs of parent orders (base model) 

Table IV gives coefficients from the jointly estimated equations for the expected 
value and variance of IS. The independent variables are intraday price volatility, 
as measured by the logarithmic difference of the maximum and minimum prices 
of the contract on the day of the order; the logarithm of the market volume of 
the contract on that day; the logarithm of the parent order size; the normalized 
urgency of the order, and a dummy variable indicating whether the order belongs 
to a customer. There are 288,724 parent orders in the data sample. 
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Mean Variance 

Variable Estimate Std. error t-value Estimate Std. error t-value 

Constant -8.560 0.673 - 12.72 -4.633 0.161 -28.86 

Intraday volatility 0.716 0.083 8.65 3.189 0.016 201.61 
-

Log volume -0.266 0.038 -7.07 0.468 0.010 46.69 
-

Log parent order size 0.823 0.037 21.95 0.325 0.012 26.89 
-

Urgency (normalized) 0.050 0.003 14.40 -0.038 0.000 -306.75 
-

Customer dummy 0.625 0.024 26.19 0.287 0.005 52.88 
-

Time ( quarter years) 0.040 0.020 1.96 -0.052 0.006 -8.42 

Time x log parent order size -0.005 0.003 -2.01 0.005 0.001 6.20 

Table V: Execution costs of parent orders across time 

Table V gives coefficients from the jointly estimated equations for the expected 
value and variance of IS. The independent variables are intraday price volatility, 
as measured by the logarithmic difference of the maximum and minimum prices 
of the contract on the day of the order; the logarithm of the market volume of 
the contract on that day; the logarithm of the parent order size; the normalized 
urgency of the order; a dummy variable indicating whether the order belongs to a 
customer; a time trend, expressed in quarter years; and an interaction of that time 
trend with the logarithm of parent order size. There are 288,724 parent orders in 
the data sample. 
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Trader type 
No. of Avg. No. Avg. Daily 

Total volume 
Customer 

traders active days volume volume(%) 

All traders 

P-trader 178 129 1,130,077 201,153,696 0% 

C-trader 164 72 241,403 39,590,024 99% 

P&C-trader 69 455 4,551,477 314,051,946 67% 

Active traders (>20 active days) 

P-trader 79 284 2,529,240 199,809,974 0% 

C-trader 68 166 568,350 38,647,786 99% 

P&C-trader 58 540 5,411,889 313,889,565 67% 

Table VI: Summary Statistics by Trader Type 

Table VI gives descriptive statistics on three types of traders. P-traders execute 
proprietary orders at least 95 percent of the days they appear in our sample of 
large orders. C-traders execute customer orders 95 percent of the days they appear 
in the sample. The rest of the traders are P&C-traderss. The first panel of the 
table provides descriptive statistics for all traders and the second panel for traders 
who are active (traders who have transacted at least 20 out of the 1460 days in 
our sample) on at least 20 days in our sample. 
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Mean Variance 

Variable Estimate Std. Error t-value Estimate Std. Error t-value 

L_ Constant -7.792 0.642 -12.13 -4.162 0.137 -30.41 

Intraday volatility 0.702 0.080 8.75 3.223 0.016 207.72 
-

Log volume -0.248 0.036 -6.83 0.390 0.010 40.12 
-

Log parent order size 0.758 0.019 40.19 0.356 0.006 63.83 
-

Urgency (normalized) 0.044 0.004 11.96 -0.038 0.000 -304.3 1 
Indicator: 

0.738 0.027 27.12 0.483 0.006 77.52 
Customer order by P&C-trader 

Indicator: 
0.439 0.055 8.02 0.468 0.01 l 42.49 

Customer order by C-trader 
Indicator: 

0.319 0.045 7.16 0.460 0.007 61.61 Proprietary order by P&C-trader 

Table VII: Execution costs of parent orders by order and trader type 

Table VII gives coefficients from the jointly estimated equations for the expected 
value and variance of IS. The independent variables are intraday price volatility, 
as measured by the logarithmic difference of the maximum and minimum prices 
of the contract on the day of the order; the logarithm of the market volume of 
the contract on that day; the logarithm of the parent order size; the normalized 
urgency of the order; and three dummy variables indicating order and trader type, 
namely: (a) customer parent orders executed by P&C-traders; (b) customer orders 
executed by C-traders; and (c) proprietary orders executed by P&C-traders. There 
are 286,842 parent orders in our sample. 
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Mean Variance 

Variable Estimate Std. error t-value Estimate Std. error t-value 

L Constant -6.539 0.685 -9.55 -4.921 0.207 -23.77 

Intraday volatility 1.047 0.089 11.80 2.998 0.023 128.34 

Log volume -0.305 0.043 -7.06 0.523 0.015 35.46 

Log parent order size 0.793 0.020 39.36 0.243 0.008 31.40 

Urgency (normalized) 0.039 0.003 11.41 -0.034 0.000 -200.69 

C-trader dummy 0.345 0.054 6.44 0.030 0.011 2.70 

Table VIII: Execution costs of customer parent orders by trader type 

Table VIII gives coefficients from the jointly estimated equations for the expect-
ed value and variance of IS for customer parent orders only. The independent 
variables are intraday price volatility, as measured by the logarithmic difference 
of the maximum and minimum prices of the contract on the day of the order; 
the logarithm of the market volume of the contract on that day; the logarithm 
of the parent order size; the normalized urgency of the order; and a dummy vari-
able equal to 1 when the parent order is executed by a C-traders and equal to 0 
otherwise. The sample contains 113,881 parent orders. 
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Mean Variance 

Variable Estimate Std. error t-value Estimate Std. error t-value 

I Constant -8.722 0.785 -11.10 -5.353 0.182 -29.40 

Intraday volatility 1.114 0.086 12.96 3.036 0.021 146.72 

Log volume -0.316 0.043 -7.29 0.527 0.013 40.65 

Log parent order size 0.834 0.021 39.82 0.272 0.007 38.76 

Urgency (normalized) 0.059 0.005 12.29 -0.033 0.000 -217.66 

Customer dummy 0.359 0.040 8.94 0.052 0.008 6.74 

Table IX: Execution costs for P&C-traders 

Table IX gives coefficients from the jointly estimated equations for the expected 
value and variance of IS for parent orders executed by P&C-traders. The inde-
pendent variables are intraday price volatility, as measured by the logarithmic 
difference of the maximum and minimum prices of the contract on the day of the 
order; the logarithm of the market volume of the contract on that day; the loga-
rithm of the parent order size; the normalized urgency of the order; and a dummy 
variable equal to 1 when the parent order is on behalf of a customer and equal to 
0 otherwise. The sample contains 146,909 parent orders. 
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